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Abstract—Although theoretical results have been established
regarding the utility of preemptive scheduling in reducing av-
erage job turnaround time, job suspension/restart is not much
used in practice at supercomputer centers for parallel job
scheduling. A number of questions remain unanswered regarding
the practical utility of preemptive scheduling. We explore this
issue through a simulation-based study, using real job logs from
supercomputer centers. We develop a tunable selective-suspension
strategy and demonstrate its effectiveness. We also present new
insights into the effect of preemptive scheduling on different
job classes and deal with the impact of suspensions on worst-
case response time. Further, we analyze the performance of the
proposed schemes under different load conditions.

Index Terms—Preemptive scheduling, Parallel job scheduling,
Backfilling.

I. INTRODUCTION
Although theoretical results have been established regard-

ing the effectiveness of preemptive scheduling strategies in
reducing average job turnaround time [1]–[5], preemptive
scheduling is not currently used for scheduling parallel jobs
at supercomputer centers. Compared to the large number of
studies that have investigated nonpreemptive scheduling of
parallel jobs [6]–[21], little research has been reported on
evaluation of preemptive scheduling strategies using real job
logs [22]–[25]. The basic idea behind preemptive scheduling
is simple: If a long-running job is temporarily suspended and
a waiting short job is allowed to run to completion first, the
wait time of the short job is significantly decreased, without
much fractional increase in the turnaround time of the long
job. Consider a long job with run time . After time t, let a
short job arrive with run time . If the short job were to run
after completion of the long job, the average job turnaround
time would be , or . Instead, if
the long job were suspended when the short job arrived, the
turnaround times of the short and long jobs would be and

, respectively, giving an average of . The
average turnaround time with suspension is less if ,
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that is, the remaining run time of the running job is greater
than the run time of the waiting job.
The suspension criterion has to be chosen carefully to ensure

freedom from starvation. Also, the suspension scheme should
bring down the average turnaround times without increasing
the worst-case turnaround times. Even though theoretical re-
sults [1]–[5] have established that preemption improves the
average turnaround time, it is important to perform evaluations
of preemptive scheduling schemes using realistic job mixes
derived from actual job logs from supercomputer centers, to
understand the effect of suspension on various categories of
jobs.
The primary contributions of this work are as follows:
Development of a selective-suspension strategy for pre-
emptive scheduling of parallel jobs,
Characterization of the significant variability in the aver-
age job turnaround time for different job categories,
Demonstration of the impact of suspension on the worst-
case turnaround times of various categories, and de-
velopment of a tunable scheme to improve worst-case
turnaround times.

This paper is organized as follows. Section II provides
background on parallel job scheduling and discusses prior
work on preemptive job scheduling. Section III characterizes
the workload used for the simulations. Section IV presents the
proposed selective preemption strategies and evaluates their
performance under the assumption of accurate estimation of
job run times. Section V studies the impact of inaccuracies
in user estimates of run time on the selective preemption
strategies. It also models the overhead for job suspension and
restart and evaluates the proposed schemes in the presence
of overhead. Section VI describes the performance of the
selective preemption strategies under different load conditions.
Section VII summarizes the results of this work.

II. BACKGROUND AND RELATEDWORK

Scheduling of parallel jobs is usually viewed in terms of
a 2D chart with time along one axis and the number of
processors along the other axis. Each job can be thought of
as a rectangle whose width is the user-estimated run time
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and height is the number of processors requested. Parallel
job scheduling strategies have been widely studied in the past
[26]–[33]. The simplest way to schedule jobs is to use the first-
come-first-served (FCFS) policy. This approach suffers from
low system utilization, however, because of fragmentation of
the available processors. Consider a scenario where a few
jobs are running in the system and many processors are idle,
but the next queued job requires all the processors in the
system. An FCFS scheduler would leave the free processors
idle even if there were waiting queued jobs requiring only a
few processors. Some solutions to this problem are to use dy-
namic partitioning [34] or gang scheduling [35]. An alternative
approach to improve the system utilization is backfilling.

A. Backfilling
Backfilling was developed for the IBM SP1 parallel su-

percomputer as part of the Extensible Argonne Scheduling
sYstem (EASY) [13] and has been implemented in several
production schedulers [36], [37]. Backfilling works by identi-
fying “holes” in the 2D schedule and moving forward smaller
jobs that fit those holes. With backfilling, users are required
to provide an estimate of the length of the jobs submitted
for execution. This information is used by the scheduler to
predict when the next queued job will be able to run. Thus, a
scheduler can determine whether a job is sufficiently small to
run without delaying any previously reserved jobs.
It is desirable that a scheduler with backfilling support two

conflicting goals. On the one hand, it is important to move
forward as many short jobs as possible, in order to improve
utilization and responsiveness. On the other hand, it is also
important to avoid starvation of large jobs and, in particular,
to be able to predict when each job will run. There are two
common variants to backfilling — conservative and aggressive
(EASY) — that attempt to balance these goals in different
ways.
1) Conservative Backfilling: With conservative backfilling,

every job is given a reservation (start time guarantee) when
it enters the system. A smaller job is allowed to backfill only
if it does not delay any previously queued job. Thus, when a
new job arrives, the following allocation procedure is executed
by a conservative backfilling scheduler. Based on the current
knowledge of the system state, the scheduler finds the earliest
time at which a sufficient number of processors are available
to run the job for a duration equal to the user-estimated run
time. This is called the “anchor point.” The scheduler then
updates the system state to reflect the allocation of processors
to this job starting from its anchor point. If the job’s anchor
point is the current time, the job is started immediately.
An example is given in Fig. 1. The first job in the queue

does not have enough processors to run. Hence, a reservation
is made for it at the anticipated termination time of the
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Fig. 1. Conservative backfilling.

longer-running job. Similarly, the second queued job is given
a reservation at the anticipated termination time of the first
queued job. Although enough processors are available for
the third queued job to start immediately, it would delay the
second job; therefore, the third job is given a reservation after
the second queued job’s anticipated termination time.
Thus, in conservative backfilling, jobs are assigned a start

time when they are submitted, based on the current usage
profile. But they may actually be able to run sooner if previous
jobs terminate earlier than expected. In this scenario, the
original schedule is compressed by releasing the existing
reservations one by one, when a running job terminates, in
the order of increasing reservation start time guarantees and
attempting backfill for the released job. If as a result of early
termination of some job, “holes” of the right size are created
for a job, then it gets an earlier reservation. In the worst case,
each released job is reinserted in the same position it held
previously. With this scheme, there is no danger of starvation,
since a reservation is made for each job when it is submitted.
2) Aggressive Backfilling: Conservative backfilling moves

jobs forward only if they do not delay any previously queued
job. Aggressive backfilling takes a more aggressive approach
and allows jobs to skip ahead provided they do not delay the
job at the head of the queue. The objective is to improve
the current utilization as much as possible, subject to some
consideration for the queue order. The price is that execution
guarantees cannot be made, because it is impossible to predict
how much each job will be delayed in the queue.
An aggressive backfilling scheduler scans the queue of wait-

ing jobs and allocates processors as requested. The scheduler
gives a reservation guarantee to the first job in the queue that
does not have enough processors to start. This reservation is
given at the earliest time at which the required processors are
expected to become free, based on the current system state.
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Fig. 2. Aggressive backfilling.

The scheduler then attempts to backfill the other queued jobs.
To be eligible for backfilling, a job must require no more than
the currently available processors and must satisfy either of
two conditions that guarantee it will not delay the first job in
the queue:

It must terminate by the time the first queued job is
scheduled to commence, or
It must use no more nodes than those are free at the time
the first queued job is scheduled to start.

Figure 2 shows an example.

B. Metrics
Two common metrics used to evaluate the performance of

scheduling schemes are the average turnaround time and the
average bounded slowdown. We use these metrics for our
studies. The bounded slowdown [38] of a job is defined as
follows:

(1)

The threshold of 10 seconds is used to limit the influence of
very short jobs on the metric.
Preemptive scheduling aims at providing lower delay to

short jobs relative to long jobs. Since long jobs have greater
tolerance to delays as compared to short jobs, our suspension
criterion is based on the expansion factor (xfactor), which
increases rapidly for short jobs and gradually for long jobs.

(2)

C. Related Work
Although preemptive scheduling is universally used at the

operating system level to multiplex processes on single-
processor systems and shared-memory multi-processors, it is
rarely used in parallel job scheduling. A large number of
studies have addressed the problem of parallel job scheduling
(see [38] for a survey of work on this topic), but most of them
address nonpreemptive scheduling strategies. Further, most of
the work on preemptive scheduling of parallel jobs considers
the jobs to be malleable [3], [25], [39], [40]; in other words,
the number of processors used to execute the job is permitted
to vary dynamically over time.
In practice, parallel jobs submitted to supercomputer centers

are generally rigid; that is, the number of processors used
to execute a job is fixed. Under this scenario, the various
schemes proposed for a malleable job model are inapplicable.
Few studies have addressed preemptive scheduling under a
model of rigid jobs, where the preemption is “local,” that is,
the suspended job must be restarted on exactly the same set
of processors on which they were suspended.
Chiang and Vernon [23] evaluate a preemptive scheduling

strategy called “immediate service (IS)” for shared-memory
systems. With this strategy, each arriving job is given an
immediate timeslice of 10 minutes, by suspending one or more
running jobs if needed. The selection of jobs for suspension
is based on their instantaneous-xfactor, defined as (wait time
+ total accumulated run time) / (total accumulated run time).
Jobs with the lowest instantaneous-xfactor are suspended. The
IS strategy significantly decreases the average job slowdown
for the traces simulated. A potential shortcoming of the IS
strategy, however, is that its preemption decisions do not
reflect the expected run time of a job. The IS strategy can
be expected to significantly improve the slowdown of aborted
jobs in the trace. Hence, it is unclear how much, if any, of
the improvement in slowdown is experienced by the jobs that
completed normally. However, no information is provided on
how different job categories are affected.
Chiang et al. [22] examine the run-to-completion policy

with a suspension policy that allows a job to be suspended
at most once. Both this approach and the IS strategy limit the
number of suspensions, whereas we use a “suspension factor”
to control the rate of suspensions, without limiting the number
of times a job can be suspended.
Parsons and Sevcik [25] discuss the design and implemen-

tation of a number of multiprocessor preemptive scheduling
disciplines. They study the effect of preemption under the
models of rigid, migratable, and malleable jobs. They conclude
that their proposed preemption scheme may increase the
response time for the model of rigid jobs.
So far, few simulation-based studies have been done on pre-

emption strategies for clusters. With no process migration, the
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distributed-memory systems impose an additional constraint
that a suspended job should get the same set of processors
when it restarts. In this paper, we propose tunable suspension
strategies for parallel job scheduling in environments where
process migration is not feasible.

III. WORKLOAD CHARACTERIZATION
We perform simulation studies using a locally developed

simulator with workload logs from different supercomputer
centers. Most supercomputer centers keep a trace file as a
record of the scheduling events that occur in the system. This
file contains information about each job submitted and its
actual execution. Typically the following data is recorded for
each job:

Name of job, user name, and so forth
Job submission time
Job resources requested, such as memory and processors
User-estimated run time
Time when job started execution
Time when job finished execution

TABLE I
JOB CATEGORIZATION CRITERIA

1 Proc 2-8 Procs 9-32 Procs 32 Procs
0 - 10 min VS Seq VS N VS W VS VW
10 min - 1 hr S Seq S N S W S VW
1 hr - 8 hr L Seq L N L W L VW

8 hr VL Seq VL N VL W VL VW

TABLE II
JOB DISTRIBUTION BY CATEGORY - CTC TRACE

1 Proc 2-8 Procs 9-32 Procs 32 Procs
0 - 10 min 14% 8% 13% 9%
10 min - 1 hr 18% 4% 6% 2%
1 hr - 8 hr 6% 3% 9% 2%

8 hr 2% 2% 1% 1%

TABLE III
JOB DISTRIBUTION BY CATEGORY - SDSC TRACE

1 Proc 2-8 Procs 9-32 Procs 32 Procs
0 - 10 min 8% 29% 9% 4%
10 min - 1 hr 2% 8% 5% 3%
1 hr - 8 hr 8% 5% 6% 1%

8 hr 3% 5% 3% 1%

From the collection of workload logs available from Feit-
elson’s archive [41], subsets of the CTC workload trace, the
SDSC workload trace and the KTH workload trace were used
to evaluate the various schemes. The CTC trace was logged

from a 430-node IBM SP2 system at the Cornell Theory
Center, the SDSC trace from a 128-node IBM SP2 system at
the San Diego Supercomputer Center, and the KTH trace from
a 100-node IBM SP2 system at the Swedish Royal Institute
of Technology. The other traces did not contain user estimates
of run time. We observed similar performance trends with all
the three traces. In order to minimize the number of graphs,
we report the performance results for CTC and SDSC traces
alone. This selection is purely arbitrary.
Although user estimates are known to be quite inaccurate

in practice, as explained above, we first studied the effect
of preemptive scheduling under the idealized assumption of
accurate estimation, before studying the effect of inaccuracies
in user estimates of job run time. Also, we first studied the
impact of preemption under the assumption that the overhead
for job suspension and restart were negligible and then studied
the influence of the overhead.

TABLE IV
AVERAGE SLOWDOWN FOR VARIOUS CATEGORIES WITH NONPREEMPTIVE

SCHEDULING - CTC TRACE

1 Proc 2-8 Procs 9-32 Procs 32 Procs
0 - 10 min 2.6 4.76 13.01 34.07
10 min - 1 hr 1.26 1.76 3.04 7.14
1 hr - 8 hr 1.13 1.43 1.88 1.63

8 hr 1.03 1.05 1.09 1.15

TABLE V
AVERAGE SLOWDOWN FOR VARIOUS CATEGORIES WITH NONPREEMPTIVE

SCHEDULING - SDSC TRACE

1 Proc 2-8 Procs 9-32 Procs 32 Procs
0 - 10 min 2.53 14.41 37.78 113.31
10 min - 1 hr 1.15 2.43 4.83 15.56
1 hr - 8 hr 1.19 1.24 1.96 2.79

8 hr 1.03 1.09 1.18 1.43

Any analysis that is based only on the average slowdown
or turnaround time of all jobs in the system cannot provide
insights into the variability within different job categories.
Therefore, in our discussion, we classify the jobs into various
categories based on the run time and the number of processors
requested, and we analyze the slowdown and turnaround time
for each category.
To analyze the performance of jobs of different sizes and

lengths, we classified jobs into 16 categories: considering
four partitions for run time — Very Short (VS), Short (S),
Long (L) and Very Long (VL) — and four partitions for the
number of processors requested — Sequential (Seq), Narrow
(N), Wide (W) and Very Wide (VW). The criteria used for job
classification are shown in Table I. The distribution of jobs in
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the trace, corresponding to the sixteen categories, is given in
Tables II and III.
Tables IV and V show the average slowdowns for the

different job categories under a nonpreemptive aggressive
backfilling strategy. The overall slowdown for the CTC trace
was 3.58, and for the SDSC trace was 14.13. Even though the
overall slowdowns are low, from the tables one can observe
that some of the Very Short categories have slowdowns as
high as 34 (CTC trace) and 113 (SDSC trace). Preemptive
strategies aim at reducing the high average slowdowns for the
short categories without significant degradation to long jobs.

IV. SELECTIVE SUSPENSION
We first propose a preemptive scheduling scheme called Se-

lective Suspension (SS), where an idle job may preempt a run-
ning job if its “suspension priority” is sufficiently higher than
the running job. An idle job attempts to suspend a collection of
running jobs so as to obtain enough free processors. In order
to control the rate of suspensions, a suspension factor (SF)
is used. This specifies the minimum ratio of the suspension
priority of a candidate idle job to the suspension priority of a
running job for preemption to occur. The suspension priority
used is the xfactor of the job.

A. Theoretical Analysis

Task T1 

Task T2 

 L 

 L 

 N

 N

 
 
 
 
 
 
 
            
 
 
      
 

       
 
 
 
 

   
 
 

  

  

Fig. 3. Two simultaneously submitted tasks T1 and T2, each requiring ‘N’
processors for ‘L’ seconds.

Let and be two tasks submitted to the scheduler at the
same time. Let both tasks be of the same length and require

the entire system for execution, with the system being free
when the two tasks are submitted. Let “s” be the suspension
factor. Before starting, both tasks have a suspension priority
of 1. The suspension priority of a task remains constant when
the task executes and increases when the task waits. One of
the two tasks, say , will start instantly. The other task, say
, will wait until its suspension priority becomes s times

the priority of before it can preempt . Now will have
to wait until its suspension priority becomes s times
before it can preempt . Thus, execution of the two tasks
will alternate, controlled by the suspension factor. Figures 4,
5, and 6 show the execution pattern of the tasks and for
various values of SF. The optimal value for SF, to restrict the
number of repeated suspensions by two similar tasks arriving
at the same time, can be obtained as follows:
Let represent the suspension priority of the waiting job

and represent the suspension priority of the running job.
The condition for the first suspension is
= s.

The preemption swaps the running job and the waiting job.
Thus, after the preemption, = 1 and = s.
The condition for the second suspension is
=
= .

Similarly, the condition for the suspension is = .
The lowest value of s for which at most n suspensions occur

is given by
= , when the running job completes.

When the running job completes,
= ;

that is, = 2, since the wait time of the waiting job = the
run time of the running job

= 2 and s = .
Thus, if the number of suspensions is to be 0, then s = 2.

For at most one suspension, s = . With s = 1, the number
of suspensions is very large, bounded only by the granularity
of the preemption routine.
With all jobs having equal length, any suspension factor

greater than 2 will not result in suspension and will be the
same as a suspension factor of 2. However, with jobs of
varying length, the number of suspensions reduces with higher
suspension factors. Thus, to avoid thrashing and to reduce the
number of suspensions, we use different suspension factors
between 1.5 and 5 in evaluating our schemes.

B. Preventing Starvation without Reservation Guarantees
With priority-based suspension, an idle job can preempt a

running job only if its priority is at least SF times greater than
the priority of the running job. All the idle jobs that are able
to find the required number of processors by suspending lower
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Fig. 6. Execution pattern of the tasks T1 and T2 when SF = .

priority running jobs are selected for execution by preempting
the corresponding jobs. All backfilling scheduling schemes
use job reservations for one or more jobs at the head of
the idle queue as a means of guaranteeing finite progress
and thereby avoiding starvation. But start time guarantees do
not have much significance in a preemptive context. Even
if we give start time guarantees for the jobs in the idle
queue, they are not guaranteed to run to completion. Since
the SS strategy uses the expected slowdown (xfactor) as the
suspension priority, there is an automatic guarantee of freedom
from starvation: ultimately any job’s xfactor will get large
enough that it will be able to preempt some running job(s)
and begin execution. Thus, one can use backfilling without the
usual reservation guarantees. We therefore remove guarantees
for all our preemption schemes.

Jobs in some categories inherently have a higher probability

of waiting longer in the queue than do jobs with comparable
xfactor from other job categories. For example, consider a
VW job needing 300 processors, and a Sequential job in the
queue at the same time. If both jobs have the same xfactor,
the probability that the Sequential job finds a running job to
suspend is higher than the probability that the VW job finds
enough lower-priority running jobs to suspend. Therefore, the
average slowdown of the VW category will tend to be higher
than the Sequential category. To redress this inequity, we
impose a restriction that the number of processors requested
by a suspending job should be at least half of the number
of processors requested by the job that it suspends, thereby
preventing the wide jobs from being suspended by the narrow
jobs. The scheduler periodically (after every minute) invokes
the preemption routine.
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C. Algorithm

Let be the suspension priority for a task which requests
processors. Let represent the set of processors allocated

to . Let represent the set of free processors and
represent the number of free processors at time t when the
preemption is attempted.
The set of tasks that can be preempted by task is given

by

Task can be scheduled by preempting one or more tasks
in if and only if
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Fig. 10. Average turnaround time: SS scheme, SDSC trace. The trends are
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Let be the elements of . Let be
a permutation of (1,2,3,. . . ,x) such that

. (If , then
. If , then the start time of the start time of
. If the start time of = the start time of , then the

queue time of the queue time of So,



INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING AND NETWORKING 8
 

Very Short
746.15291.51135.48

0
20
40
60
80

100
120

Seq Narrow Wide Very
Wide

Width

W
or

st
 c

as
e 

Sl
ow

do
w

n

SF = 2
No Suspension
IS

 Short
757.65

0
10
20
30
40
50
60
70

Seq Narrow Wide Very
Wide

Width
W

or
st

 c
as

e 
Sl

ow
do

w
n

SF = 2
No Suspension
IS

Long
96.693.49

0
5

10
15
20
25
30
35
40

Seq Narrow Wide Very
Wide

Width

W
or

st
 c

as
e 

Sl
ow

do
w

n

SF = 2
No Suspension
IS

Very Long
26.6527.58

0
1
2
3
4
5
6
7
8
9

10

Seq Narrow Wide Very
Wide

Width

W
or

st
 c

as
e 

Sl
ow

do
w

n

SF = 2
No Suspension
IS

Fig. 11. Worst-case slowdown: SS scheme, CTC trace. SS is much better
than NS for most of the categories and is slightly worse for some of the VL
categories. Compared to IS, SS is much better for all the categories except
for the VS categories.
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Fig. 12. Worst-case turnaround time: SS scheme, CTC trace. The trends are
similar to those with the worst-case slowdown metric (Fig. 11).

The set of tasks preempted by task is given by

If is a previously suspended task attempting reentry, then
it has to get the same set of processors that it was using before
it was suspended. Here we remove the restriction that the
number of processors requested by a suspending job should
be at least half of the number of nodes requested by the job
that it suspends. Otherwise if a VW job happens to suspend a
narrow job, then in the worst-case, the narrow job has to wait
till the VW job completes to get rescheduled. So the set of
tasks that can be preempted by in this case is given by
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Fig. 13. Worst-case slowdown for the TSS scheme: CTC trace. TSS improves
the worst-case slowdowns for many categories without affecting the worst-
case slowdowns for other categories.
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Fig. 14. Worst-case turnaround times for the TSS scheme: CTC trace.
TSS improves the worst-case turnaround times for many categories without
affecting the worst-case tunraround times for other categories.

Task can be scheduled by preempting one or more tasks
in if and only if

D. Results
We compare the SS scheme run under various suspension

factors with the No-Suspension (NS) scheme with aggressive
backfilling and the IS scheme. From Figs. 7 – 10, we can see
that the SS scheme provides significant improvement for the
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Pseudocode for the selective suspension scheme 
Sort the list of running jobs in ascending order of suspension priority 
Sort the list of idle jobs in descending order of suspension priority 
for each idle job 
do 
      set the candidate_job_set to be the null set 
      if  (idle job is a suspended job) 
      then 
            goto already_suspended 
      else 
            available_processors = number of free processors 
            for each running job 
            do 
                  if  (number of processors requested by the idle job > available_processors) 
                  then 
                        if  ((suspension priority of the idle job >= SF * suspension priority of the running job)  && 
                             (number of processors used by the running job <= 2 * number of processors requested by the idle job)) 
                        then 
                              available_processors = available_processors + number of processors used by the running job 
                              candidate_job_set = {candidate_job_set} u {running job} 
                        else 
                              goto next_idle_job 
                        end if 
                  else 
                        goto suspend_jobs_1 
                  end if 
            done 
            end for 
      end if 
      goto next_idle_job 
      already_suspended: 
            set available_processor_set to the set of free processors 
            for each running job 
            do 
                  if  (set of processors requested by idle job is not a subset of available_processor_set) 
                  then 
                        if  (suspension priority of the idle job >= SF * suspension priority of the running job) 
                        then 
                              if  ({set of processors used by the running job}  n {set of processors requested by the idle job} is not empty) 
                              then 
                                    available_processor_set = {available_processor_set} u {set of processors used by running job} 
                                    candidate_job_set = {candidate_job_set} u {running job} 
                              end  if 
                        else 
                              goto next_idle_ job 
                        end if 
                  else 
                        goto suspend_job_2 
                  end if 
            done 
            end for 
      goto next_idle_job 
      suspend_jobs_1: 
            sort job(s) in candidate_job_set in descending order of number of processors used 
            available_processors = number of free processors 
            for each job in candidate_job_set 
            do 
                  if  (number of processors requested by the idle job > available_processors) 
                  then 
                        suspend the job 
                        available_processors = available_processors + number of processors used by the suspended job 
                  else 
                        schedule the idle job 
                        goto next_idle_job 
                  end if 
            done 
            end for 
      goto next_idle_job 
      suspend_jobs_2: 
            suspend all jobs in the candidate_job_set 
            schedule the idle job 
       next_idle_job: 
            do nothing 
done 
end for 
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Fig. 15. Worst-case slowdown: SS scheme, SDSC trace. SS is much better
than NS for most of the categories and is slightly worse for some of the VL
categories. Compared to IS, SS is much better for all the categories except
for the VS categories.
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Fig. 16. Worst-case turnaround time: SS scheme, SDSC trace. The trends
are similar to those with the worst-case slowdown metric (Fig. 15).

Very-Short (VS) and Short (S) length categories and Wide (W)
and Very-Wide (VW) width categories. For example, for the
VS-VW category, slowdown is reduced from 113 for the NS
scheme to 7 for SS with SF = 2 for the SDSC trace (reduced
from 34 for the NS scheme to under 3 for SS with SF = 2 for
the CTC trace).
For the VS and S length categories, a lower SF results in

lowered slowdown and turnaround time. This is because a
lower SF increases the probability that a job in these categories
will suspend a job in the Long (L) or Very-Long (VL) category.
The same is also true for the L length category, but the
effect of change in SF is less pronounced. For the VL length
category, there is an opposite trend with decreasing SF: the
slowdown and turnaround times worsen. This is due to the
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Fig. 17. Worst-case slowdown for the TSS scheme: SDSC trace. TSS
improves the worst-case slowdowns for many categories without affecting
the worst-case slowdowns for other categories.
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Fig. 18. Worst-case turnaround times for the TSS scheme: SDSC trace.
TSS improves the worst-case turnaround times for many categories without
affecting the worst-case tunraround times for other categories.

increasing probability that a Long job will be suspended by
a job in a shorter category as SF decreases. In comparison
to the base No-Suspension (NS) scheme, the SS scheme
provides significant benefits for the VS and S categories and
a slight improvement for most of the Long categories but is
slightly worse for the VL categories. The performance of the
IS scheme is very good for the VS categories. It is better
than the SS scheme for the VS categories and worse for
the other categories. Although the overall slowdown for IS is
considerably less than for the No-Suspension scheme, it is not
better than SS. Moreover, with IS the VW and VL categories
get significantly worse.
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Fig. 19. Average slowdown: Inaccurate estimates of run time; CTC trace.
Compared to NS, SS improves the slowdowns for most of the categories with
little deterioration to other categories. The performance of IS is bad for the
long jobs.
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Fig. 20. Average slowdown of well estimated jobs: CTC trace. Compared to
NS, SS significantly improves the slowdowns for most of the categories with
little deterioration to other categories. The performance of SS is better than
or comparable to IS for VS categories.

E. Tunable Selective Suspension (TSS)
From the graphs of the previous section, one can observe

that the SS scheme significantly improves the average slow-
down and turnaround time of various job categories. But
from a practical point of view, the worst-case slowdowns and
turnaround times are very important. A scheme that improves
the average slowdowns and turnaround times for most of the
categories but makes the worst-case slowdown and turnaround
time for the long categories worse, is not an acceptable
scheme. For example, a delay of 1 hour for a 10-minute job
(slowdown = 7) is tolerable, whereas a slowdown of 7 for a
24-hour job is unacceptable. Figure 11 compares the worst-
case slowdowns for SF = 2 with the worst-case slowdowns of
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Fig. 21. Average slowdown of badly estimated jobs: CTC trace. Compared
to NS, SS provides a slight improvement in slowdowns for many categories.
SS tends to penalize the badly estimated jobs in VS categories. IS gives better
performance for VS, S and VL categories.

the NS scheme and the IS scheme for the CTC trace. One can
observe that the worst-case slowdowns with the SS scheme are
much better than with the NS scheme for most of the cases.
But the worst-case slowdowns for some of the long categories
are worse than for the NS scheme.
Although the worst-case slowdown with SS is generally

less than that with NS, the absolute worst-case slowdowns are
much higher than the average slowdowns for some of the short
categories. For the IS scheme, the worst-case slowdowns for
the very short categories are lower, but they are very high for
the long jobs, an unacceptable situation. Figure 12 compares
the worst-case turnaround times for the SS scheme with worst-
case turnaround times for the NS scheme and the IS scheme,
for the CTC trace. Even though the trends observed here are
similar to those with the worst-case slowdowns, the categories
where SS is the best with respect to worst-case turnaround
time are not same as the categories for which SS is the best
with respect to worst-case slowdowns. This is because a job
with the worst-case turnaround time need not be the one with
worst-case slowdown. Similar trends can be observed for the
SDSC trace from Figs. 15 and 16.
We next propose a tunable scheme to improve the worst-

case slowdown and turnaround time without significant dete-
rioration of the average slowdown and turnaround time. This
scheme involves controlling the variance in the slowdowns
and turnaround times by associating a limit with each job.
Preemption of a job is disabled when its priority exceeds this
limit. This limit is set to 1.5 times the average slowdown of
the category that the job belongs to.
The candidate set of tasks that can be preempted by a task
is given by
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Fig. 22. Average turnaround time: Inaccurate estimates of run time; CTC
trace. Compared to NS, SS improves the turnaround times for most of the
categories with little deterioration to other categories. The performance of IS
is bad for the long jobs.

where (category( )) represents the average slowdown
for the job category to which belongs.
If is a previously suspended task attempting reentry, then

All the other conditions remain the same as mentioned in
Section IV-C.
Figures 13 and 14 show the result of this tunable scheme

for the CTC trace. It improves the worst-case slowdowns
for some long categories (VL W, VL VW, L N) and some
short categories (VS Seq, VS N, S Seq) without affecting the
worst-case slowdowns of the other categories. It improves the
worst-case turnaround times for most of the categories without
affecting the worst-case turnaround times of the other cate-
gories. Figures 17 and 18 show similar trends for the SDSC
trace. This scheme can also be applied to selectively tune the
slowdowns or turnaround times for particular categories. The
TSS scheme is used for all the subsequent experiments, and the
term “Selective Suspension” or “SS” in the following sections
refers to “Tunable Selective Suspension.”

V. IMPACT OF USER ESTIMATE INACCURACIES
We have so far assumed that the user estimates of job run

time are perfect. Now, we consider the effect of user estimate
inaccuracies on the proposed schemes. This analysis is needed
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Fig. 23. Average turnaround time of well estimated jobs: CTC trace.
Compared to NS, SS significantly improves the turnaround times for most
of the categories with little deterioration to other categories. The performance
of SS is comparable to IS for VS categories.
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Fig. 24. Average turnaround time of badly estimated jobs: CTC trace.
Compared to NS, SS provides a slight improvement in turnaround times
for many categories. SS tends to penalize the badly estimated jobs in VS
categories. IS gives better performance for VS, S, and VL categories.

for modeling an actual system workload. In this context, we
believe that a problem has been ignored by previous studies
when analyzing the effect of over estimation on scheduling
strategies. Abnormally aborted jobs tend to excessively skew
the average slowdown of jobs in a workload. Consider a job
requesting a wall-clock limit of 24 hours, which is queued for
1 hour and then aborts within one minute due to some fatal
exception. The slowdown of this job would be computed to
be 60, whereas the average slowdown of normally completing
long jobs is typically under 2. If even 5% of the jobs have a
high slowdown of 60, while 95% of the normally completing
jobs have a slowdown of 2, the average slowdown over all
jobs would be around 5. Now consider a scheme such as the
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Fig. 25. Average slowdown: Inaccurate estimates of run time; SDSC trace.
Compared to NS, SS improves the slowdowns for most of the categories with
little deterioration to other categories. The performance of IS is bad for the
long jobs.

speculative backfilling strategy evaluated in [29]. With this
scheme, a job is given a free timeslot to execute in, even if
that slot is considerably smaller than the requested wall-clock
limit. Aborting jobs will quickly terminate, and since they
did not have to be queued till an adequately long window
was available, their slowdown would decrease dramatically
with the speculative backfilling scheme. As a result, the
average slowdown of the entire trace would now be close to
2, assuming that the slowdown of the normally completing
jobs does not change significantly. A comparison of the
average slowdowns would seem to indicate that the speculative
backfilling scheme results in a significant improvement in job
slowdown from 5 to 2. However, under the above scenario, the
change is due only to the small fraction of aborted jobs, and
not due to any benefits to the normal jobs. In order to avoid
this problem, we group the jobs into two different estimation
categories:

Jobs that are well estimated (the estimated time is not
more than twice the actual run time of that job) and
Jobs that are poorly estimated (the estimated run time is
more than twice the actual run time).

Within each group, the jobs are further classified into 16
categories based on their actual run time and the number of
processors requested.
One can observe from Figs. 19 and 25 that the Selective

Suspension scheme improves the slowdowns for most of the
categories without adversely affecting the other categories.
The slowdowns for the short and wide categories are quite
high compared to the other categories, mainly because of the
overestimation. Since the suspension priority used by the SS
scheme is xfactor, it favors the short jobs. But if a short job
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Fig. 26. Average slowdown of well estimated jobs: SDSC trace. Compared to
NS, SS significantly improves the slowdowns for most of the categories with
little deterioration to other categories. The performance of IS is bad except
for VS categories.
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Fig. 27. Average slowdown of badly estimated jobs: SDSC trace. Compared
to NS, SS provides a slight improvement in slowdowns for many categories.
SS tends to penalize the badly estimated jobs in VS categories.

was badly estimated, it would be treated as a long job and its
priority would increase only gradually. So, it will not be able
to suspend running jobs easily and will end up with a high
slowdown. This situation does not happen with IS because of
the 10-minute time quantum for each arriving job irrespective
of the estimated run time, and therefore the slowdowns for
the very short category (whose length is less than or equal to
10 minutes) is better in IS than other schemes. For the other
categories, however, SS performs much better than IS.
Figures 22 and 28 compare the average turnaround times

for the SS scheme with that of the NS and IS schemes for
the CTC and SDSC traces, respectively. The improvement in
performance for the short and wide categories is much less
when compared to the improvement achieved with the accurate
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Fig. 28. Average turnaround time: Inaccurate estimates of run time; SDSC
trace. Compared to NS, SS improves the turnaround times for most of the
categories with little deterioration to other categories. The performance of IS
is bad except for VS categories.
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Fig. 29. Average turnaround time of well estimated jobs: SDSC trace.
Compared to NS, SS significantly improves the turnaround times for most
of the categories with little deterioration to other categories. The performance
of IS is very bad for long jobs.

user estimate case. The reasoning provided above for the
increase in slowdowns for the short and wide categories holds
for this case also. The seemingly long jobs (badly estimated
short jobs) are unable to suspend running jobs easily and have
to wait in the queue for a longer time, thus ending up with a
high turnaround time. From Figs. 20 - 21 and Figs. 26 - 27,
the higher slowdowns for the VS categories with SS clearly
are due to the badly estimated jobs. Figures. 23 - 24 and
Figures 29 - 30 show that the reduction in the percentage
improvement of the average turnaround times for the short
and wide categories in SS is due to the badly estimated jobs.
One can also observe that, for the well estimated jobs, SS is
better than or comparable to IS for the VS categories and SS
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Fig. 30. Average turnaround time of badly estimated jobs: SDSC trace.
Compared to NS, SS provides a slight improvement in turnaround times
for many categories. SS tends to penalize the badly estimated jobs in VS
categories. The performance of IS is bad except for VS categories.

outperforms IS in all other categories.

A. Modeling of Job Suspension Overhead
We have so far assumed no overhead for preemption of jobs.

In this section, we present simulation results that incorporate
overheads for job suspension. Since the job traces did not have
information about job memory requirements, we considered
the memory requirement of jobs to be random and uniformly
distributed between 100 MB and 1 GB. The overhead for
suspension is calculated as the time taken to write the main
memory used by the job to the disk. The memory transfer rate
that we considered is based on the following scenario: with a
commodity local disk for every node, with each node being
a quad, the transfer rate per processor was assumed to be 2
MB/s (corresponding to a disk bandwidth of 8 MB/s).
Figures 31 and 32 compare respectively the slowdowns and

turnaround times of the proposed tunable scheme with NS
and IS in the presence of overhead for job suspension/restart
for the CTC trace. Figures 33 and 34 compare respectively
the slowdowns and turnaround times of the proposed tunable
scheme with NS and IS in the presence of overhead for job
suspension/restart for the SDSC trace. One can observe that
overhead does not significantly affect the performance of the
SS scheme.

VI. LOAD VARIATION
We have so far seen the performance of the Selective

Suspension scheme under normal load. In this section, we
present the performance of the SS scheme under different
load conditions starting from the normal load (original trace)
and increasing load until the system reaches saturation. The
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Fig. 31. Average slowdown with modeling of overhead for suspension/restart:
CTC trace. The impact of overhead on the performance of SS scheme is
minimal.
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Fig. 32. Average turnaround time with modeling of overhead for suspen-
sion/restart: CTC trace. The impact of overhead on the performance of SS
scheme is minimal.

different loads correspond to modification of the traces by
dividing the arrival times of the jobs by suitable constants,
keeping their run time the same as in the original trace. For
example, the job trace for a load factor of 1.1 is obtained by
dividing the arrival times of the jobs in the original trace by
1.1.
For simplicity, we have reduced the number of job cate-

gories from sixteen to four for the load variation studies: two
categories based on their run time — Short (S) and Long
(L) — and two categories based on the number of processors
requested — Narrow (N) and Wide (W). The criteria used for
job classifications are shown in Table VI. The distribution of
jobs in the CTC and SDSC traces, corresponding to the four
categories, is given in Table VII and Table VIII, respectively.
Figures 35 and 38 show the overall system utilization for
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Fig. 33. Average slowdown with modeling of overhead for suspension/restart:
SDSC trace. The impact of overhead on the performance of SS scheme is
minimal.
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Fig. 34. Average turnaround time with modeling of overhead for suspen-
sion/restart: SDSC trace. The impact of overhead on the performance of SS
scheme is minimal.

different schemes under different load conditions for the CTC
and SDSC traces. One can observe that the SS scheme is able
to achieve a better utilization than the NS scheme at higher
loads, whereas the overall system utilization is very low under
the IS scheme. Also, there is no significant increase in the
overall system utilization (for both the SS and NS schemes)
when the load factor is increased beyond 1.6 (for CTC) and
1.3 (for SDSC). This result indicates that the system reaches
saturation at a load factor of 1.6 (for CTC) and 1.3 (for SDSC).
We report the performance of the SS scheme for various load
factors between 1.0 (normal) and 1.6 for the CTC trace and
between 1.0 and 1.3 for the SDSC trace.
Figures 36 and 37 and Figures 39 and 40 compare the

performance of the SS scheme with the NS and IS schemes
for different job categories under different load conditions
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Fig. 35. Overall system utilization under different load conditions: CTC
trace. The overall system utilization with the SS scheme is better than or
comparable to the NS scheme. The performance of IS is much worse.
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Fig. 36. Average slowdown: varying load; CTC trace. The improvements
achieved by the SS scheme are more pronounced under high load.
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Fig. 37. Average turnaround time: varying load; CTC trace. The improve-
ments achieved by the SS scheme are more pronounced under high load.
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Fig. 38. Overall system utilization under different load conditions: SDSC
trace. The overall system utilization with the SS scheme is better than or
comparable to the NS scheme. The performance of IS is much worse.
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Fig. 39. Average slowdown: varying load; SDSC trace. The improvements
achieved by the SS scheme are more pronounced under high load.
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Fig. 40. Average turnaround time: varying load; SDSC trace. The improve-
ments achieved by the SS scheme are more pronounced under high load.
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Fig. 41. Average slowdown versus system utilization: CTC trace. SS provides
better performance even if the system is heavily utilized.
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Fig. 42. Average turnaround time versus system utilization: CTC trace. SS
provides better performance even if the system is heavily utilized.
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Fig. 43. Average slowdown versus system utilization: SDSC trace. SS
provides better performance even if the system is heavily utilized.
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Fig. 44. Average turnaround time versus system utilization: SDSC trace. SS
provides better performance even if the system is heavily utilized.

TABLE VI
JOB CATEGORIZATION CRITERIA FOR LOAD VARIATION STUDIES

8 Processors 8 Processors
1 Hr SN SW
1 Hr LN LW

for CTC and SDSC traces. It can be observed that the im-
provements obtained by the SS scheme are more pronounced
under high load. The trends with respect to different categories
under higher loads is similar to that observed under the normal
load. It provides significant benefit to the short jobs without
affecting the performance of long jobs. The IS scheme is better
than the SS scheme only for the SN jobs in terms of average
turnaround time, whereas it is better than SS for both SN and
SW jobs in terms of average slowdown. It implies that the IS
scheme improves the performance of only the relatively shorter
jobs in SW category by adversely affecting the performance
of the relatively longer jobs. Also, the performance of the IS
scheme is much worse for the long jobs, a very undesirable

TABLE VII
JOB DISTRIBUTION BY CATEGORY FOR LOAD VARIATION STUDIES - CTC

TRACE

8 Processors 8 Processors
1 Hr 44% 13%
1 Hr 30% 13%

TABLE VIII
JOB DISTRIBUTION BY CATEGORY FOR LOAD VARIATION STUDIES - SDSC

TRACE

8 Processors 8 Processors
1 Hr 47% 22%
1 Hr 21% 10%
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situation.
Figures 41 and 42 compare respectively the average slow-

downs and the average turnaround times of the jobs in the
CTC trace against the overall system utilization for various
schemes. Figures 43 and 44 compare respectively the average
slowdowns and the average turnaround times of the jobs in the
SDSC trace against the overall system utilization for various
schemes. The SS scheme clearly is much better than both the
IS and NS schemes. Even when the system is highly utilized,
the SS scheme is able to provide much better response times
for all categories of jobs. The IS scheme is not able to achieve
high system utilization.

VII. CONCLUSIONS

In this paper, we have explored the issue of preemptive
scheduling of parallel jobs, using job traces from different
supercomputer centers. We have proposed a tunable, selec-
tive suspension scheme and demonstrated that it provides
significant improvement in the average and the worst-case
slowdown of most job categories. It was also shown to provide
better slowdown for most job categories over a previously
proposed Immediate Service scheme. We also modeled the
effect of overheads for job suspension, showing that even
under stringent assumptions about available bandwidth to
disk, the proposed scheme provides significant benefits over
nonpreemptive scheduling and the Immediate Service strategy.
We also evaluated the proposed schemes in the presence of
inaccurate estimate of job run times and showed that the
proposed scheme produced good results. Further, we showed
that the Selective Suspension strategy provides greater benefits
under high system loads compared to the other schemes.

ACKNOWLEDGMENTS

We thank the anonymous referees for their helpful sugges-
tions on improving the presentation of the paper.
This work was supported in part by Sandia National Lab-

oratories, the University of Chicago under NSF Grant #SCI-
0414407, and the U.S. Department of Energy under Contract
W-31-109-ENG-38.

REFERENCES

[1] B. DasGupta and M. A. Palis, “Online real-time preemptive scheduling
of jobs with deadlines,” in APPROX, 2000, pp. 96–107. [Online].
Available: citeseer.nj.nec.com/dasgupta00online.html

[2] X. Deng and P. Dymond, “On multiprocessor system scheduling,”
in Proceedings of the eighth annual ACM symposium on Parallel
algorithms and architectures. ACM Press, 1996, pp. 82–88.

[3] X. Deng, N. Gu, T. Brecht, and K. Lu, “Preemptive scheduling
of parallel jobs on multiprocessors,” in SODA: ACM-SIAM
Symposium on Discrete Algorithms, 1996. [Online]. Available:
citeseer.nj.nec.com/deng00preemptive.html

[4] L. Epstein, “Optimal preemptive scheduling on uniform processors
with non-decreasing speed ratios,” Lecture Notes in Computer
Science, vol. 2010, pp. 230–248, 2001. [Online]. Available:
citeseer.nj.nec.com/epstein00optimal.html

[5] U. Schwiegelshohn and R. Yahyapour, “Fairness in parallel job
scheduling,” Journal of Scheduling, vol. 3, no. 5, pp. 297–320, 2000.
[Online]. Available: citeseer.ist.psu.edu/schwiegelshohn00fairness.html

[6] S. V. Anastasiadis and K. C. Sevcik, “Parallel application scheduling
on networks of workstations,” Journal of Parallel and Distributed
Computing, vol. 43, no. 2, pp. 109–124, 1997. [Online]. Available:
citeseer.nj.nec.com/article/anastasiadis96parallel.html

[7] W. Cirne and F. Berman, “Adaptive selection of partition size for
supercomputer requests,” in Workshop on Job Scheduling Strategies
for Parallel Processing, 2000, pp. 187–208. [Online]. Available:
citeseer.nj.nec.com/479768.html

[8] D. G. Feitelson, “Analyzing the root causes of performance evaluation
results,” Leibniz Center, Hebrew University, Tech. Rep., 2002.

[9] J. P. Jones and B. Nitzberg, “Scheduling for parallel supercomputing:
A historical perspective of achievable utilization,” in Workshop on Job
Scheduling Strategies for Parallel Processing, 1999, pp. 1–16. [Online].
Available: citeseer.nj.nec.com/patton99scheduling.html

[10] W. A. W. Jr., C. L. Mahood, and J. E. West, “Scheduling jobs on
parallel systems using a relaxed backfill strategy,” in Workshop on Job
Scheduling Strategies for Parallel Processing, 2002.

[11] B. G. Lawson and E. Smirni, “Multiple-queue backfilling scheduling
with priorities and reservations for parallel systems,” in Workshop on
Job Scheduling Strategies for Parallel Processing, 2002.

[12] B. G. Lawson, E. Smirni, and D. Puiu, “Self-adapting backfilling
scheduling for parallel systems,” in Proceedings of the International
Conference on Parallel Processing, 2002.

[13] D. Lifka, “The ANL/IBM SP scheduling system,” in Workshop on Job
Scheduling Strategies for Parallel Processing, 1995, pp. 295–303.

[14] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, work-
loads, and user runtime estimates in scheduling the IBM SP2 with
backfilling,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 6, pp. 529–543, 2001.

[15] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan, “Scheduling of
parallel jobs in a heterogeneous multi-site environment,” in Workshop
on Job Scheduling Strategies for Parallel Processing, 2003.

[16] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Selec-
tive reservation strategies for backfill job scheduling,” in Workshop on
Job Scheduling Strategies for Parallel Processing, 2002.

[17] S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur, and P. Sa-
dayappan, “Effective selection of partition sizes for moldable scheduling
of parallel jobs,” in Proceedings of the 9th International Conference on
High Performance Computing, 2002.

[18] V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnston, and P. Sa-
dayappan, “Selective buddy allocation for scheduling parallel jobs on
clusters,” in Proceedings of the IEEE International Conference on
Cluster Computing, 2002.

[19] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan, “Dis-
tributed job scheduling on computational grids using multiple simultane-
ous requests,” in Proceedings of the 11th IEEE International Symposium
on High Performance Distributed Computing, 2002, pp. 359–366.

[20] D. Talby and D. G. Feitelson, “Supporting priorities and
improving utilization of the ibm sp scheduler using slack-based
backfilling,” in Proceedings of the 13th International Parallel
Processing Symposium, 1999, pp. 513–517. [Online]. Available:
citeseer.nj.nec.com/talby99supporting.html

[21] D. Zotkin and P. Keleher, “Job-length estimation and performance in
backfilling schedulers,” in Proceedings of the 8th High Performance
Distributed Computing Conference, 1999, pp. 236–243. [Online].
Available: citeseer.nj.nec.com/196999.html

[22] S. H. Chiang, R. K. Mansharamani, and M. K. Vernon, “Use of
application characteristics and limited preemption for run-to-completion
parallel processor scheduling policies,” in ACM SIGMETRICS



INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING AND NETWORKING 19

Conference on Measurement and Modeling of Computer Systems, 1994,
pp. 33–44. [Online]. Available: citeseer.nj.nec.com/chiang94use.html

[23] S. H. Chiang and M. K. Vernon, “Production job scheduling for parallel
shared memory systems,” in Proceedings of International Parallel
and Distributed Processing Symposium, 2002. [Online]. Available:
citeseer.nj.nec.com/196999.html

[24] L. T. Leutenneger and M. K. Vernon, “The performance of
multiprogrammed multiprocessor scheduling policies,” in ACM
SIGMETRICS Conference on Measurement and Modelling of
Computer Systems, May 1990, pp. 226–236. [Online]. Available:
citeseer.nj.nec.com/196999.html

[25] E. W. Parsons and K. C. Sevcik, “Implementing multiprocessor schedul-
ing disciplines,” in Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph, Eds. Springer Verlag, 1997, pp. 166–
192, lecture Notes in Computer Science vol. 1291.

[26] K. Aida, “Effect of job size characteristics on job scheduling
performance,” in Workshop on Job Scheduling Strategies for
Parallel Processing, 2000, pp. 1–17. [Online]. Available:
citeseer.nj.nec.com/319169.html

[27] O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo, “A comparative
study of online scheduling algorithms for networks of workstations,”
Cluster Computing, vol. 3, no. 2, pp. 95–112, 2000. [Online]. Available:
citeseer.nj.nec.com/article/arndt98comparative.html

[28] W. Cirne, “When the herd is smart: The emergent behavior of sa,” in
IEEE Transactions on Parallel and Distributed Systems, 2002. [Online].
Available: citeseer.nj.nec.com/457615.html

[29] D. Perkovic and P. J. Keleher, “Randomization, speculation, and adap-
tation in batch schedulers,” in Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (CDROM). IEEE Computer Society,
2000, p. 7.

[30] P. J. Keleher, D. Zotkin, and D. Perkovic, “Attacking the bottlenecks of
backfilling schedulers,” Cluster Computing, vol. 3, no. 4, pp. 245–254,
2000. [Online]. Available: citeseer.nj.nec.com/467800.html

[31] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour, “On the design
and evaluation of job scheduling algorithms,” in Workshop on Job
Scheduling Strategies for Parallel Processing, 1999, pp. 17–42.
[Online]. Available: citeseer.nj.nec.com/krallmann99design.html

[32] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Char-
acterization of backfilling strategies for parallel job scheduling,” in
Proceedings of the ICPP-2002 Workshops, 2002, pp. 514–519.

[33] A. Streit, “On job scheduling for HPC-clusters and the dynP scheduler,”
in Proceedings of the 8th International Conference on High Performance
Computing. Springer-Verlag, 2001, pp. 58–67.

[34] C. McCann, R. Vaswani, and J. Zahorjan, “A dynamic processor
allocation policy for multiprogrammed shared-memory multiprocessors,”
ACM Transactions on Computer Systems, vol. 11, no. 2, pp. 146–178,
1993.

[35] D. G. Feitelson and M. A. Jette, “Improved utilization and responsive-
ness with gang scheduling,” in Workshop on Job Scheduling Strategies
for Parallel Processing. Springer-Verlag, 1997, pp. 238–261.

[36] D. Jackson, Q. Snell, and M. J. Clement, “Core algorithms of
the maui scheduler,” in Workshop on Job Scheduling Strategies
for Parallel Processing, 2001, pp. 87–102. [Online]. Available:
citeseer.nj.nec.com/479768.html

[37] J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The easy -
loadleveler api project,” in Workshop on Job Scheduling Strategies
for Parallel Processing, 1996, pp. 41–47. [Online]. Available:
citeseer.nj.nec.com/479768.html

[38] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong, “Theory and practice in parallel job scheduling,” in Workshop
on Job Scheduling Strategies for Parallel Processing. Springer-Verlag,
1997, pp. 1–34.

[39] K. C. Sevcik, “Application scheduling and processor allocation
in multiprogrammed parallel processing systems,” Performance
Evaluation, vol. 19, no. 2-3, pp. 107–140, 1994. [Online]. Available:
citeseer.nj.nec.com/sevcik93application.html

[40] J. Zahorjan and C. McCann, “Processor scheduling in shared memory

multiprocessors,” in ACM SIGMETRICS Conference on Measurement
and Modelling of Computer Systems, May 1990, pp. 214–225. [Online].
Available: citeseer.nj.nec.com/196999.html

[41] D. G. Feitelson, “Logs of real parallel workloads from production
systems,” http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

Rajkumar Kettimuthu is a researcher at Argonne
National Laboratory’s Mathematics and Computer
Science Division. His research interests include data
transport in high-bandwidth and high-delay networks
and scheduling and resource management for cluster
computing and the Grid. He has a bachelor of engi-
neering degree in computer science and engineering
from Anna Univerisy, Madras, India, and a master
of science in computer and information science from
the Ohio State University.

 

Vijay Subramani received his B.E in computer sci-
ence and engineering from Anna University, India,
in 2000 and his M.S in computer and information
science from the Ohio State University in 2002. His
research at Ohio State included scheduling and re-
source management for parallel and distributed sys-
tems. He currently works at Microsoft Corporation
in Redmond, WA. His past work experience includes
an internship at Los Alamos National Laboratory,
where he worked on buffered coscheduling.

 

Srividya Srinivasan currently works as a software
engineer at Microsoft Corporation in Redmond, WA.
She worked as a software developer at Bloomberg
L.P in New York earlier. She received a B.E degree
in computer science and engineering from Anna
University, Chennai, India, in 2000 and her M.S
in computer and information science from the Ohio
State University in 2002. Her research at Ohio State
focused on parallel and distributed systems with an
emphasis on parallel job scheduling.

Thiagaraja Gopalsamy is a senior software engi-
neer with Altera Corporation, San Jose. He received
his bachelor’s degree in computer science and engi-
neering in 1999 from Anna University, India and his
master’s degree in computer and information science
in 2001 from the Ohio State University. His past
research interests include mobile ad hoc networks
and parallel computing. He is currently working on
field programmable gate arrays and reconfigurable
computing.



INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING AND NETWORKING 20

D. K. Panda is a professor of computer science
at the Ohio State University. His research interests
include parallel computer architecture, high perfor-
mance networking, and network-based computing.
He has published over 150 papers in these areas.
His research group is currently collaborating with
national laboratories and leading companies on de-
signing various communication and I/O subsystems
of next-generation HPC systems and datacenters
with modern interconnects. The MVAPICH (MPI
over VAPI for InfiniBand) package developed by

his research group (http://nowlab.cis.ohio-state.edu/projects/mpi-iba/) is being
used by more than 160 organizations worldwide to extract the potential of
InfiniBand-based clusters for HPC applications. Dr. Panda is a recipient of
the NSF CAREER Award, OSU Lumley Research Award (1997 and 2001),
and an Ameritech Faculty Fellow Award. He is a senior member of IEEE
Computer Society and a member of ACM.

P. Sadayappan received the B. Tech. degree from
the Indian Institute of Technology, Madras, India,
and an M.S. and Ph.D. from the State University of
New York at Stony Brook, all in electrical engineer-
ing. He is currently a professor in the Department of
Computer Science and Engineering at the Ohio State
University. His research interests include scheduling
and resource management for parallel/distributed
systems and compiler/runtime support for high-
performance computing.

The submitted manuscript has been in part created by the
University of Chicago as Operator of Argonne National
Laboratory (”Argonne”) under Contract No. W-31-109-ENG-
38 with the U.S. Department of Energy. The U.S. Government
retains for itself, and othersacting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on
behalf of the Government.


